21 research outputs found

    A novel hybrid 3D endoscope zooming and repositioning system : design and feasibility study

    Get PDF
    Background: Manipulation of the endoscope during minimally invasive surgery is a major source of inconvenience and discomfort. This report elucidates the architecture of a novel one-hand controlled endoscope positioning device and presents a practicability evaluation. Methods and materials: Setup time and total surgery time, number and duration of the manipulations, side effects of three-dimensional (3D) imaging, and ergonomic complaints were assessed by three surgeons during cadaveric and in vivo porcine trials. Results: Setup was accomplished in an average (SD) of 230 (120) seconds. The manipulation time was 3.87 (1.77) seconds for angular movements and 0.83 (0.24) seconds for zooming, with an average (SD) of 30.5 (16.3) manipulations per procedure. No side effects of 3D imaging or ergonomic complaints were reported. Conclusions: The integration of an active zoom into a passive endoscope holder delivers a convenient synergy between a human and a machine-controlled holding device. It is shown to be safe, simple, and intuitive to use and allows unrestrained autonomic control of the endoscope by the surgeon

    Guide for steering wires for a steering mechanism for a steerable tool

    No full text
    The invention relates to a longitudinal member, LM, guide (300) for guiding a set of LMs (110) for a mechanical transmission system, MTS, (100) for a steerable tool (500), which LM guide (300) comprises a body (302) having a proximal side (342), a distal side (344) and an outside edge (316), wherein the body (302) of the LM guide (300) comprises a set of channels (310) arranged around a fictive tube (320), each channel (310) passing from the proximal side (342) to the distal side (344) of the body (302), configured to retain an LM (110) of the set in a fixed radial position around the fictive tube (32), being connected to the outside edge (316) of the body (302) via a slot (314), wherein the slot has a width (326) narrower than the channel (310) width (320)

    Torque-transmitting steering mechanism for a steerable tool

    No full text
    A mechanical transmission system, MTS (100), for a steerable tool (500) which steerable tool (500) has a proximal end (20) and distal end (40) and comprises a shaft region (532), a bendable proximal part, BPP (534) that is omnidirectionally moveable, and a bendable distal part, BDP, (530) that is omnidirectionally moveable and moves responsive to movement of the BPP (534), which MTS (100) comprises a plurality of longitudinal members, LM (110) each having a proximal (20) and distal end (40), arranged in a longitudinal direction around a fictive tube (120), and has a corresponding transmission shaft region, TSR (132), transmission bendable proximal part, TBPP (134) and transmission bendable distal part, TBDP (130), wherein a plane section (114) of at least one LM (110) demonstrates an anisotropic area moment of inertia, and the majority of the LMs (110) are each axially rotationally constrained at 1 or more constraining points along the TBDP (130) or along the TSR (132) wherein the LMs are longitudinally slidable with respect to each discrete constraining point, and the MTS (100) is configured such that the BDP (530) tip is axially rotationable in a bent position by a complementary rotation of the BPP (534)
    corecore